Black \& Scholes

The Black-Scholes Formula

Dr. Guillermo López Dumrauf
dumrauf@fibertel.com.ar

Copyright © 2006 by Dr. Guillermo López Dumrauf.

Hedging

If you writing a call option, you are exposed to the risk of the stock price rising above the strike price at expiration
In order to cover the call, you need at expiration, cash equal to the difference between the current price of the stock and the strike price of the option (ST-K)
In Black-Scholes, the hedge is a portfolio compounded with some shares of the underlying stock and some riskless assets (US T-Bonds)

How much of each to put in the hedge is the key to determining the option's value.

Perfect hedge

A perfect hedge always pays exactly the amount necessary to cover the option.

Payoff replication:

- if the option expires in the money, the hedge provides exactly the amount necessary to cover the call
- if the option expires out of the money the hedge will be worth nothing

Dynamic hedging

Dynamic hedging is a trading strategy which replicates the payoff of the option throughout its life (creating a perfect hedge)

It has a fixed and known total cost

Dynamic hedging is a process for managing the risk of options and it is important for explaining an option's value.

Dynamic hedging

Black-Scholes hedging is determined by the weights of the hedging portfolio. Because the parameters of the formula are constantly changing, the hedging portfolio must be constantly updated to reflect the new weights...

The portfolio which doesn't reflects the current BlackScholes weights is out of balance. The process to keeping the portfolio in balance is called rebalancing

If the hedging strategy is performed correctly, the value of the portfolio will be equal to the value of the option at all times...

Costs of the hedging

1. Set-up cost (initial cash flows associated with the hedging strategy)
2. Maintenance costs: infusion and transaction costs (costs associated with rebalancing the hedge, e.g. buy more share of stock or bonds)

In addition, there are:

- fees and taxes associated with making the transactions
- costs resulting from the bid-ask spread and
- the inability to execute trades at exactly the price specified by the strategy

Self-Financing Dynamic Hedging

A hedging strategy whose total cost at any time (excluding transaction costs) is equal to set-up costs is called self-financing.

The coin-tossing example

A gambler decides making a bet of $\$ 100.000$ He needs 3 faces to win
$12.500 \rightarrow 25.000$
$25.000 \rightarrow 50.000$
$50.000 \rightarrow 100.000$

The Delta of an option

The Delta of an option is the rate of the change in the option price with respect to the change in the stock price

When we look at changes in the value of an option, we are interested in changes relative to the underlying stock price.

If the price of the stock changes $\$ 1$, what will be the change in the option's value?

The Delta of an option

- Option is deep in the money and near expiration: the delta is close to one, so there is a dollar for dollar relationship between movements of the spot price and movements of the option's value
- Option is deep out of the money and near expiration: the delta is close to zero (because the option's value is absolutely insensitive to changes in the stock price) and it will be worth almost nothing

Implicit in the B\&S model there is only factor of uncertainty in the value of an option: volatility
In truth, the uncertainty implicit in an option is more complicated than this.

The Delta of an option

Real world is more complicated: the dynamic of stock price is more complicated than a geometric brownian motion

Jump risk: if there is a probability of stock price will unexpectedly jump downward, this can change the option's value even when the spot price does not change (Brownian motion model does not include this effect)

In principle, we can observe this jump comparing the spot price and option value at some time t_{0}, doing the same at a later time \mathbf{t}_{1}
Because the price of the option is not controlled by the stock price alone, this may note give an accurate estimate of the delta of the option

Even if we ignore probabilities of jumps and changing volatility, the value of the options does change as time elapses (see parameter theta)

The Delta of an option

In the B\&S world, stock price are supposed to follow a GBM with constant volatility and the option's value changes for only two reasons:

1. Time change and
2. Stock price change

We can use an approximation to the delta of the option: the actual rate of change in the value of the option with respect to the change in the stock price...

The Delta of an option

Example:
$\begin{array}{ll}\mathrm{S}_{0}=1,87 ; & \mathrm{C}_{0}=0,059 \\ \mathrm{~S}_{1}=1,89 ; & \mathrm{C}_{1}=0,06\end{array} \quad \Delta=\frac{C_{t_{0}}-e^{-r\left(t_{1}-t_{0}\right)} C_{t_{1}}}{S_{t_{0}}-e^{\left.-r t_{1}-t_{0}\right)} S_{t_{1}}}=\frac{0,06-e^{0.047(1 / 35)} 0,059}{1,89-e^{0,047(1 / 35)} 1,87}=\frac{0,001}{0,02} \cong 0,05$

The value of the delta is 0,05
The numerator says the time adjusted change in the price of the option was $\$ 0,02$ while the time adjusted change in the stock price was $\$ 0,001$

The ratio says that for every $\$ 1$ change in the stock price, there was an approximately $\$ 0,05$ in the value of the option

How the formula works in the real world?

Call evolution for Transener

Date
$14 / 03 / 06$
$21 / 03 / 06$
$22 / 03 / 06$
$23 / 03 / 06$
$23 / 03 / 06$
$25 / 03 / 06$
$25 / 03 / 06$
$27 / 03 / 06$
$27 / 03 / 06$
$27 / 03 / 06$
$27 / 03 / 06$
$27 / 03 / 06$
$27 / 03 / 06$
$28 / 03 / 06$
$28 / 03 / 06$
$28 / 03 / 06$
$28 / 03 / 06$
$28 / 03 / 06$
$28 / 03 / 06$
$29 / 03 / 06$
$29 / 03 / 06$
$30 / 03 / 06$
$30 / 03 / 06$
$31 / 03 / 06$
$31 / 03 / 06$
$02 / 04 / 06$

Stock price	Call	Day
1,82	0,042	
1,89	0,06	
1,87	0,059	
1,89	0,06	
1,87	0,053	
1,86	0,05	
1,9	0,055	
1,92	0,068	
1,9209	0,06	
1,91	0,069	
1,95	0,075	
1,96	0,084	
1,97	0,085	
1,95	0,07	
1,97	0,083	
1,96	0,083	
1,95	0,085	
1,97	0,09	
1,96	0,087	
1,97	0,085	
1,98	0,085	
1,99	0,09	
2,03	0,123	
2,01	0,11	
2,02	0,12	
1,97	0,075	

Days to maturity
Var S
Var Call
Delta
Call (formula)
/03/06
22/03/06
23/03/06 5/03/06 25/03/06 27/03/06 27/03/06 8/03/06 28/03/06 28/03/06 28/03/06 29/03/06 29/03/06 02/04/06
38
31
30
29
29
27
27
25
25
25
25
25
25
24
24
24
24
24
24
23
23
22
22
21
21
19

0,07	0,018	0,257
$-0,02$	$-0,001$	0,050
0,02	0,001	0,050
$-0,02$	$-0,007$	0,350
$-0,01$	$-0,003$	0,300
0,04	0,005	0,125
0,02	0,013	0,650
0,0009	$-0,008$	$-8,88$
$-0,0109$	0,009	$-0,82$
0,04	0,006	0,150
0,01	0,009	0,900
0,01	0,001	0,100
$-0,02$	$-0,015$	0,750
0,02	0,013	0,650
$-0,01$	0	0,000
$-0,01$	0,002	$-0,20$
0,02	0,005	0,250
$-0,01$	$-0,003$	0,300
0,01	$-0,002$	$-0,20$
0,01	0	0,000
0,01	0,005	0,500
0,04	0,033	0,825
$-0,02$	$-0,013$	0,650
0,01	0,01	1,000
$-0,05$	$-0,045$	0,900

The approximate formula

The formula is a good approximation because:

1. If we choose a time $\mathbf{t}_{\mathbf{1}}$ very close to time $\mathbf{t}_{\mathbf{0}}$ and apply the formula, then we obtain values for the delta that are very close to the actual value of the delta at time t_{0}
2. Each time we substitute the approximate value of the delta for the real value, we produce a small error. But these small errors do not accumulate, and do not make our approximation useless!!

Delta - approximate formula

What makes the formula an approximation is the fact that we compare the change in the option price to the change in the stock price over small period of time.

If all times are infinitesimally close, we get a formula that is no longer approximate but is precisely correct...

What if the denominator of the formula is zero?
This does not invalidate the formula, because according to the BM model, the probability that the stock price at time t1 will be exactly equal to... is zero (the probability of any given "event"is always zero, only ranges of events matter in probability theory) Of course, in reality it can happen.

The Black-Scholes hedging strategy

If we know the delta of a european call or put option, we can hedge the option and determine its theoretical value

The assumptions behind the Black-Scholes formula play a key role in determining the value of an option. Identifying how relaxing them is an important part of understanding the Black-Scholes method

Hedging strategy in Black-Scholes

A very important part is to understand how the formula translates into a hedging strategy that replicates the payoff of the option

Then, no-arbitrage assumptions ensures that the value of the option is equal to the cost of the hedging strategy

Hedging strategy in Black-Scholes

The value of the hedging portfolio at time t, is the SAME as the B\&S Formula for the option's value

$$
\Delta_{t} S_{t}-B_{t} e^{-r(T-t)}
$$

Once the hedging is set up, the next step is to maintain the hedge...
In order to keep the portfolio in balance, we will have to continuously monitor the values of Δ and B, buying or selling shares...

In order to ensure the strategy is self-rebalancing we want the rebalancing costs at every step to be as close to zero as possible

Hedging strategy in Black-Scholes

In reality, the hedging strategy is used to hedge an option not on a single share of stock but on some larger number of shares (In Argentina, a standard option contract is on 100 shares of the underlying)

Since delta is a number between 0 and 1, it represents the percentage of the lot of shares that should be purchased...

The hedging strategy is self-financing

In BS world there is no transactions costs, so

Set up costs=value of option=total cost of hedging

Therefore, set-up costs equal the total cost of hedging, which implies that the maintenance cost of hedging must equal zero and the portfolio is self-financing

If the BS formula holds, then the hedging strategy must be self-financing. It would be more convincing if we started with the hedging strategy and then showed that it replicates the payoff of the option and is self-financing

Rebalancing the portfolio

When we set up the hedging portfolio at time $\mathbf{t}_{\mathbf{0}}$ its value is

$$
C_{T}=\Delta_{t_{0}} S_{t_{0}}-B_{t_{0}} e^{-r\left(T-t_{0}\right)}
$$

Suppose that at time t_{1} we decide to rebalance the portfolio. The amount spent at t_{0} and t_{1} are

Time	Amount spent
t_{0}	$\Delta_{\mathrm{t} 0} \mathrm{~S}_{\mathrm{t} 0}-\mathrm{e}^{-\mathrm{r}(\mathrm{T}-\mathrm{t} 0)} \mathrm{B}_{\mathrm{t} 0}$
t_{1}	$\left(\Delta_{\mathrm{t} 1}-\Delta_{\mathrm{t} 0}\right) \mathrm{S}_{\mathrm{t} 0}-\mathrm{e}^{-\mathrm{r}(\mathrm{T}-\mathrm{t} 0)}\left(\mathrm{B}_{\mathrm{t} 1}-\mathrm{B}_{\mathrm{t} 0}\right)$

Because we need to compare the value of all purchases at $\mathbf{t}_{\mathbf{0}}$, the money spent at time t_{1} must be discounted by a factor of $e^{-r(t 1-t 0)}$.

Rebalancing the portfolio

The money spent on hedging at time $\mathbf{t}_{\mathbf{1}}$ is
$e^{-r\left(t_{1}-t_{0}\right)}\left(\Delta_{t_{1}}-\Delta_{t_{0}}\right) S_{t_{1}}-\left(B_{t_{1}}-B_{t_{0}}\right) e^{-r\left(T-t_{0}\right)} e^{-r\left(t_{1}-t_{0}\right)} e^{-r\left(T-t_{1}\right)}\left(B_{t_{1}}-B_{t_{0}}\right)=e^{-r(t-1)}$
And the money spent in setting up the hedge at time t_{0} and rebalancing at time $\mathbf{t}_{\mathbf{1}}$ is

$$
\left(\Delta_{t_{0}} S_{t_{0}}-B_{t_{0}} e^{-r\left(T-t_{0}\right)}\right)+e^{-r\left(t_{1}-t_{0}\right)}\left(\Delta_{t_{1}}-\Delta_{t_{0}}\right) S_{t_{1}}-\left(B_{t_{1}}-B_{t_{0}}\right) e^{-r\left(T-t_{0}\right)}
$$

Rearranging this a bit, we obtain

$$
\Delta_{t_{0}}\left(S_{t_{0}}-e^{-r\left(t_{1}-t_{0}\right)} S_{t_{1}}\right)+e^{-r\left(t_{1}-t_{0}\right)}\left(\Delta_{t_{1}} S_{t_{1}}-e^{-r\left(T-t_{1}\right)} B_{t_{1}}\right)
$$

Replacing $\Delta \mathrm{t}_{0}$ in the last expression for the approximate delta, we have

$$
\frac{C_{t_{0}}-e^{-r\left(t_{1}-t_{0}\right)} C_{t_{1}}}{S_{t_{0}}-e^{-r\left(t_{1}-t_{0}\right)} S_{t_{1}}}\left(S_{t_{0}}-e^{-r\left(t_{1}-t_{0}\right)} S_{t_{1}}\right)+e^{-r\left(t_{1}-t_{0}\right)}\left(\Delta_{t_{1}} S_{t_{1}}-e^{-r\left(T-t_{1}\right)} B_{t_{1}}\right)
$$

Rebalancing the portfolio

$$
\frac{C_{t_{0}}-e^{-r\left(t_{1}-t_{0}\right)} C_{t_{1}}}{S_{t_{0}}-e^{-r\left(t_{1}-t_{0}\right)} S_{t_{1}}}\left(S_{t_{0}}-e^{-r\left(t_{1}-t_{0}\right)} S_{t_{1}}\right)+e^{-r\left(t_{1}-t_{0}\right)}\left(\Delta_{t_{1}} S_{t_{1}}-e^{-r\left(T-t_{1}\right)} B_{t_{1}}\right)
$$

Option's value at time $\mathbf{t}_{\mathbf{0}}$

Option's value at time t_{1} (adjusted for time value)

B\&S formula for the call at time t_{1} adjusted for time value

$$
\left(C_{t_{0}}-e^{-r\left(t_{1}-t_{0}\right)} C_{t_{1}}\right)+e^{-r\left(t_{1}-t_{0}\right)}\left(\Delta_{t_{1}} S_{t_{1}}-e^{-r\left(T-t_{1}\right)} B_{t_{1}}\right)=C_{t_{0}}
$$

This says if we set up the portfolio at $\mathbf{t}_{\mathbf{0}}$ and rebalance at t_{1}, the total cost of the option is the cost of the option at time t_{0}
If BS holds at time t_{0}, it holds at time $\mathrm{N}-1$; the same arguments imply that it holds at time $\mathrm{t}_{\mathrm{N}-2}, \mathrm{t}_{\mathrm{N}-3} \ldots$ so $\mathbf{B S}$ formula must hold at time t_{o}

The Black-Scholes formula for Δ and B

The formulas are given in terms of cumulative normal distribution function:

$$
C=S N\left(\dot{d}_{1}\right)-X e^{\substack{d_{1}=\frac{\ln \left(\frac{S}{x}\right)+r, T}{\sigma \sqrt{T} T}+\frac{\sigma \sqrt{T}}{2}}(\dot{d} 2)}
$$

Black-Scholes and the Brownian Motion Model

Computing the probability that C expires in the money is equivalent to computing the probability that $S_{T} \geq K$

The return on S from time t to time T is given by $\ln \left(\frac{S_{T}}{S_{t}}\right)$

This return is a random variable with mean

And standard deviation

$$
\left(r-\frac{\sigma^{2}}{2}\right)(T-t)
$$

$\sigma \sqrt{\mathrm{T}-\mathrm{t}}$
Therefore, the random variable is given by $\frac{\ln \left(\frac{S_{T}}{S_{t}}\right)-\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}$
This is normally distributed, with mean zero and standard deviation 1

Black-Scholes and the Brownian Motion Model

Now, we transform the equation $\mathrm{ST} \geq \mathrm{K}$ dividing both sides by St, taking logarithms, substracting $\mathbf{r}-\boldsymbol{\sigma}^{\mathbf{2}} \mathbf{2}$ (T-t) and finally, by dividing by $\sigma \sqrt{T-t}$

$$
\frac{\ln \left(\frac{S_{T}}{S_{t}}\right)-\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}} \geq \frac{\ln \left(\frac{K}{S_{t}}\right)-\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}
$$

Because we want an expression with "less than or equal" (to use the cumulative normal distribution) we negate this equation and obtain:

$$
\frac{\ln \left(\frac{S_{t}}{S_{T}}\right)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}} \leq \frac{\ln \left(\frac{S_{t}}{K}\right)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}
$$

Black-Scholes and the Brownian Motion Model

For the original statement to be true ($\mathrm{ST} \geq \mathrm{K}$) then the random variable on the left-hand side of equation must be less than or equal to the value on the right-hand side

$$
\frac{\ln \left(\frac{S_{t}}{S_{T}}\right)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}} \leq \frac{\ln \left(\frac{S_{t}}{K}\right)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}
$$

The probability the inequality holds is exactly given by the cumulative normal distribution of the right-hand side, so the probability that C will expire in the money is

$$
P\left(S_{T} \leq K\right)=N\left(\frac{\ln \left(\frac{S_{t}}{K}\right)+\left(r-\frac{\sigma^{2}}{2}\right)(T-t)}{\sigma \sqrt{T-t}}\right)
$$

Excercises

1. Using B\&S formula, calculate the fair value for a call option on Petrobras, for different strike prices. Today is 7/4/06 and the annual risk free rate is $4,9 \%$. Then compare this value with the option market value.
2. Calculate the implied volatility for $K=4$

PBEC3.20AB	0,195	-7,14	0,21	0,19	0,195	0,19	6	19.780	13:21	Option market value
PBEC3.20.JU	0,315	+1,61	0,31	0,32	0,32	0,31	6	18.762	$13: 50$	
PBEC3.40AB	0,055	0,00	0,055	0,04	0,055	0,04	6	2.310	13:42	
PBEC3.40.JU	0,181	-2,69	0,186	0,181	0,181	0,181	1	1.755	13:38	
PBEC3.60AB	0,008	$-20,00$	0,01	0,009	0,009	0,008	3	2.975	13:53	
PBEC3.60.JU	0,101	+1,00	0,10	0,10	0,105	0,10	7	7.948	13:46	
PBEC3.80AB	0,003	-40,00	0,005	0,003	0,003	0,003	14	717	$13: 53$	
PBEC3.80JU	0,05	0,00	0,05	0,053	0,053	0,05	2	14.750	13:58	
PBEC4.00AB	0,001	-50,00	0,002	0,002	0,002	0,001	4	199	13:33	
PBEC4.40AB	0,001	0,00	0,001	0,001	0,001	0,001	1	60	12:55	

| Stock | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Petrobras | 3,38 | 3,37 | 3,36 | 3,40 | $+0,30$ | 2.228 .858 | $14: 41$ | Orice |

